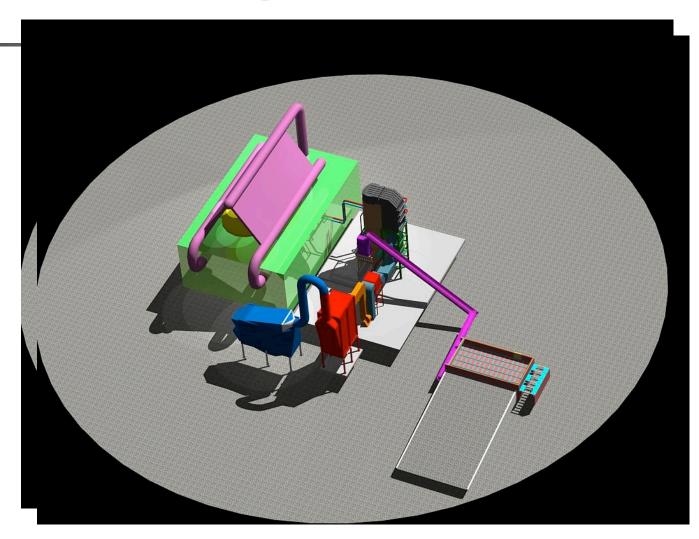
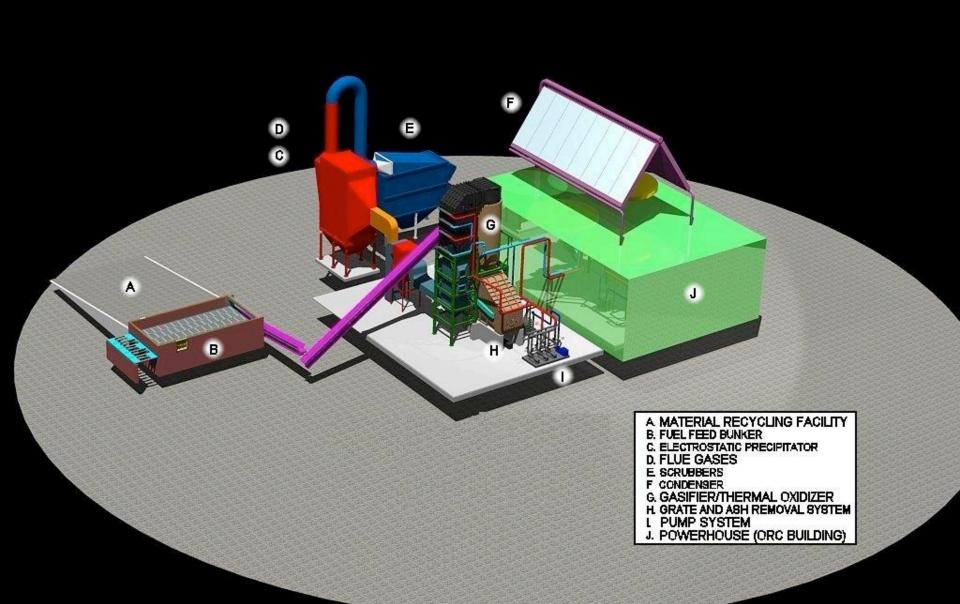
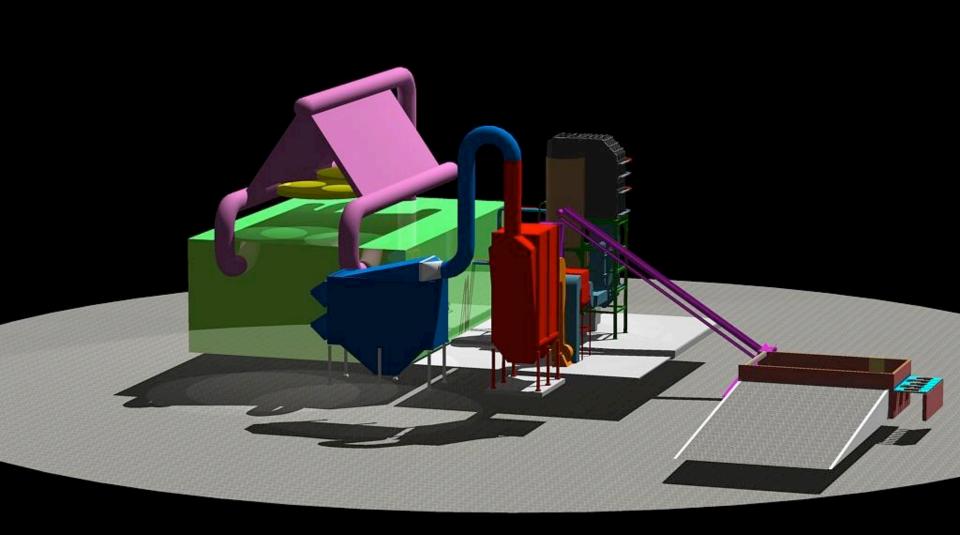
EXECUTIVE SUMMARY PRESENTATION

WASTE TO ENERGY PROJECT

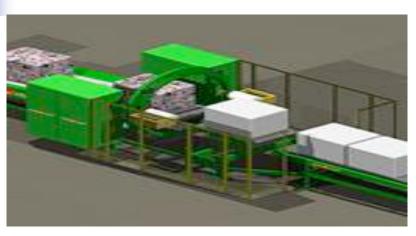
"Reasonable, Responsible & Recycling"


Access Energy Technologies LTD





Gasification/Thermal Oxidation



Front End Recycling

- Materials that cannot be oxidized are removed (i.e. stone, glass, aluminum cans)
- These materials are re-sorted into recyclables and non-recyclables

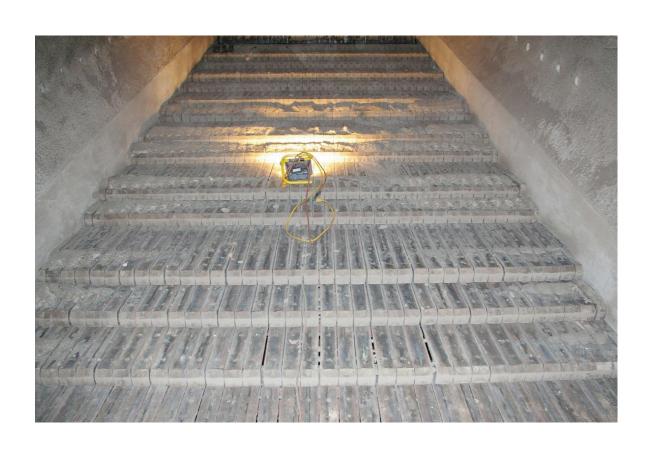
Waste transfer can be clean

- Transfer to Waste Processing can be direct or by trans shipment.
- Baling systems can produce wrapped waste with NO odor and NO negative image.

Fully enclosed waste transfer

Visually neutral

- Bales weigh approximately 3,500 pounds each
- Compression ratio approximately 14:1
- Can be stacked deeply, and held in high temperatures without problems



- Municipal solid waste (MSW) is processed into Refuse Derived Fuel (RDF) in a Material Recycling Facility (MRF)
- The RDF can be processed in the Thermal Oxidizer
- The RDF can also be mixed with 82% moisture content, "belt pressed" with local municipal sewage sludge and processed in the Thermal Oxidizer

- Technology for MSW thermal oxidizers is well proven
- Installations in Russia, Germany, and China
- Biomass version of NEC Thermal
 Oxidizer used extensively in Canada,
 Europe and Asia

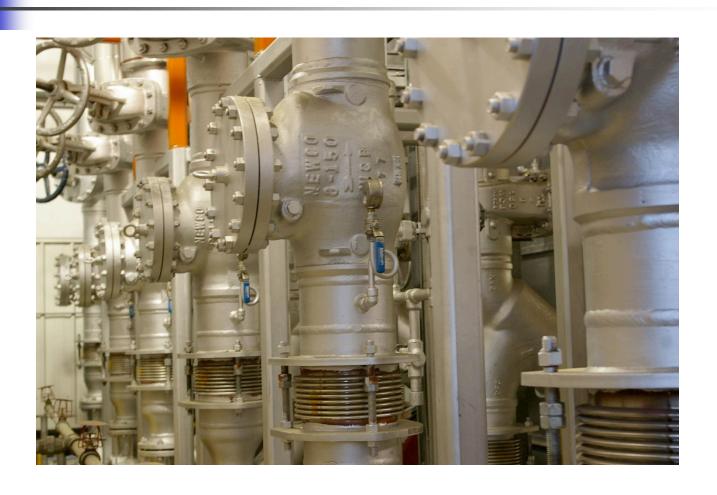
Reciprocating Grate

- This technology is well proven in dozens of installations over the world
- Reliable, robust, solid and commercially proven design that can be project-financed

- Municipal Solid Waste
- Refuse derived fuel
- Bio Solids or sludge from waste water
- Used railway ties & telephone poles
- Construction and demolition debris
- Land clearing debris
- Poultry litter
- Cow manure
- Pig manure
- Mixtures of the above

Power Generation Equipment

- Very large stage grate area
- Low Grate Loading
- Hence essentially zero slag
- Large refractory mass stabilizes oxidation
- Large baffled oxidizer ensures complete conversion to heat and emission compliance



Significant Features, 2

- The unit can process MSW with moisture contents up to 60% (wet basis) at reduced output and ash contents up to 35%
- 4:1 turndown ratio
- Continuous de-ashing
- Water cooled ash conveying system

Physical Plant Construction

Construction

- Estimated direct workforce will be 35 to 40 men for approximately 14 months
- Additional jobs will likely be in transportation and supply.

Construction Major Trades

- Heavy equipment operators
- Electricians major and sub-systems
- Machinists, welders and fitters
- Operators for power equipment, cranes, concrete
- Refractory specialists

The 1850°F (1010°C) products from thermal oxidation from a 100 Million Btu/h system is routed through specially designed heat exchangers to provide heat to power generation equipment

Operating Costs and Renewable Power

- Typical operating costs for the Thermal Oxidizer system range from USD 15 to 25 per tonne of MSW depending on the size and location of the facility
- Net power supplied to the grid by one Themal Oxydizer unit is ≈ 5.5 MWe

Environmental Compliance

- Proven emission control system will be installed and tailored to meet local emission standards. Emission reduction technology may include:
 - Electrostatic precipitator and/or
 - NOx re-burn chamber or NOx wash unit for reducing NOx emissions

- Dioxins and Furans Destroyed, from Oxidizer design
- Chlorine can react with cellulose to form dioxins and furans in the 1st stage these gases are destroyed in the 2nd stage with its 1,800°F plus brick walls
- No black waterwalls are present to chill - and lock in - dioxins or furans in the 2nd stage

- Project technology is recognized under the Kyoto Protocol (under the United Nations Framework Convention on Climate Change) to reduce greenhouse gases (CO₂ and CH₄)
- Project will displace CO₂ from fossil fuels used to generate grid power electricity
- Project will prevent CH₄ formation from landfilling MSW

Revenue from Carbon Credits

- Additional revenue can be generated by certifying GHG reductions under the Kyoto Protocol's Clean Development Mechanism (or the mechanism that will be in place after 2012)
- A "Project Design Document" will need to be submitted to appropriate entities for registration

Project Preliminary Budget

- 430 tonnes/day MSW and other fuels depending on heat value and ash content
- 5.5 MW net electricity production
- Assumptions:
 - Permits and government approvals granted
 - Skilled and labor workers available
 - Trucks and equipment available
 - Utilities provided to the plant.

Project Preliminary Budget (con'd)

- Not Included: Connecting to the utility and any cost related to supply power to the plant including but not limited to transformer, utility poles, and related construction costs.
- Budget: (Subject to feasibility study)

Warranty and Guarantee

- The system is wrapped in a warranty and guaranteed for the first year.
- This warranty insures that the system will work as specified and provides insurance of revenue stream.

Thank you!

- Hawaii Pacific Energy Group, LLC
- Warren Lim President
- Mobile: 808-216-2210 (USA)
- warrenslim@hawaiiantel.net